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Abstract
We present numerical results for chains of SU(2) BPS monopoles constructed
from Nahm data. The long chain limit reveals an asymmetric behaviour
transverse to the periodic direction, with the asymmetry becoming more
pronounced at shorter separations. This analysis is motivated by a search for
semiclassical finite temperature instantons in the 3D SU(2) Georgi–Glashow
model, but it appears that in the periodic limit the instanton chains either have
logarithmically divergent action or wash themselves out.

PACS numbers: 11.10.Kk, 11.15.Kc

In this paper we investigate numerically the properties of long chains of SU(2) BPS monopoles.
In addition to the inherent mathematical interest in a search for such solutions, our physical
motivation is to seek caloron (finite temperature instanton) solutions in the 3D SU(2) Georgi–
Glashow (GG) model. At T = 0, such 3D GG instantons are mathematically identical to the
’t Hooft–Polyakov monopoles [1–3] of a (3 + 1)-dimensional Yang–Mills–Higgs theory; and
at T > 0, calorons of the 3D GG model would be periodic in the Euclidean time direction,
with period β = 1

T
, and so would be ‘periodic monopoles’. Recall that in 4D Yang–Mills

theory, explicit finite action caloron solutions are known, both with trivial [4] and nontrivial
[5–7] holonomy along the Euclidean time direction. But in the 3D GG model, no finite
action caloron solutions are known. This lack of caloron solutions is somewhat surprising
for the following reason. At T = 0 the 3D GG model is confining due to nonperturbative
instanton effects [8]. More recently it has been shown analytically [9], and confirmed by a
lattice analysis [10], that the 3D SU(2) GG model has a deconfining phase transition in the Z2

universality class at nonzero T, and that the critical behaviour at this transition involves both
instanton and charged scalar degrees of freedom. It is, therefore, somewhat surprising that it
has not been possible to construct finite action semiclassical solutions corresponding to finite
T instantons.

To establish notation, consider the SU(2) Georgi–Glashow (GG) model in three-
dimensional spacetime. This model is an SU(2) Yang–Mills gauge theory minimally coupled
to a scalar field, �, in the adjoint representation, and with a symmetry breaking quartic scalar
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potential. The Euclidean action is

S =
∫

d3x

[
1

2
tr(FµνFµν) +

1

2
Dµ�aDµ�a +

λ

4
(�a�a − v2)2

]
. (1)

Here Aµ = 1
2Aa

µτa, Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν],� = 1
2�aτa and Dµ� =

∂µ� − ig[Aµ,�], where τ a (a = 1, 2, 3) denotes the 2 × 2 Pauli matrix generators of
su(2). Note that in three-dimensional spacetime the coupling g has dimensions of (mass)1/2,
as do the fields � and Aµ. 3D GG instantons (‘monopoles’) are solutions to the classical
Euclidean equations of motion:

DµDµ� = λ(�a�a − v2)�, DµFµν = ig[Dν�,�]. (2)

No explicit periodic solutions to the instanton (‘monopole’) equations (2) are known. The
most direct way to study multi-monopoles is by ansatz, either radial or axial. The axial ansatz
can produce chains of alternating monopoles and antimonopoles [11], but does not appear to
support chains of monopoles. Instead, here we restrict ourselves to the BPS limit (the scalar
self-coupling λ → 0), where there exist other approaches to constructing monopoles. A
hint of periodic monopoles appears in [12], where doubly periodic 4D Yang–Mills instantons
were studied—as one period shrinks one is left with 3D BPS monopoles periodic in the other
direction. But the truly periodic limit is not fully understood. Direct analyses [13, 14] have
found periodic BPS monopoles, but with divergent energy. Also, Bielawski [15] has studied
the n-monople problem for widely separated monopoles, showing that the moduli space is
exponentially close to the hyperkahler Gibbons–Manton metric [16].

In the BPS limit the instanton/monopole equations (2) simplify to

Dµ� = 1
2εµνσFνσ . (3)

In the BPS limit the energy/action reduces to

SBPS =
∫

d3x∇2tr(�2). (4)

Thus, a convenient gauge invariant quantity to study is

|�|2 ≡ 1
2 tr(�2). (5)

In this paper we consider the Nahm construction [3, 17] of BPS monopoles, in which one can
reconstruct the monopole fields � and Aµ from a solution of the associated Nahm equations,
as described below.

It is useful to consider what one might expect to find. Outside a core region (whose
scale we take to be 1 in this paper) a single BPS monopole behaves like an Abelian Dirac
monopole. Thus, one might expect (at least when the period is greater than the core size,
which corresponds to low T in the 3D GG language) that a periodic BPS monopole would look
like a periodic array of Dirac monopoles, outside some core region around each monopole
(see figure 1). But if this were the case, the action/energy would be logarithmically divergent
[13, 14]. This is because for an array of N = 2J + 1 Dirac monopoles, along the x2 axis with
separation β, the magnetic field is �B = −�∇φ, where the magnetic scalar potential is

φ =
+J∑

n=−J

1√
x2

1 + x2
3 + (x2 − nβ)2

. (6)

For any finite N, at truly asymptotic distances |�x| � Jβ, the scalar potential φ behaves as
φ ∼ N

|�x| , and the solution looks like a charge N Dirac monopole. But at intermediate distances,
inside a sphere of radius of order Jβ (see figure 1) the behaviour is quite different. For
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Figure 1. An array of Dirac monopoles aligned along the x2 axis with separation β. In the large
J limit, within the central slab region − β

2 � x2 � β
2 , the magnetic potential goes over from the

3D 1/r form to a 2D ln(ρ) form within the region of radius of order Jβ.

a periodic array in the J → ∞ limit we can restrict our attention to the central slab with
− β

2 � x2 � β

2 , and write [13]

φ = constant +
∞′∑

n=−∞


 1√

x2
1 + x2

3 + (x2 − nβ)2
− 1

nβ


 . (7)

Here the sum is extended to infinity and the divergence at the origin has been subtracted (the
prime indicates that the n = 0 term is excluded in the sum). Within this slab, at transverse
distances inside some region of order Jβ, φ behaves as : φ ∼ ln

(
ρ

2J+1

)
, where ρ is the

radial transverse distance: ρ =
√

x2
1 + x2

3 . This illustrates the physical origin of the transition
from the 3D Laplace Green’s function to the logarithmic 2D Laplace Green’s function. So,
assuming the periodic BPS monopole is like an array of Dirac monopoles outside a core region,
we might expect that the Higgs field magnitude |�| would behave as |�| ∼ ln ρ at large ρ.
This leads to logarithmically divergent action/energy, as can be seen from (4) [13, 14].

Is it possible to avoid this divergence? One possible solution is that the expectation
of independent core regions is not realized. Since the BPS action/energy is proportional
to the instanton/monopole charge, it is natural to expect that within the central slab region
− β

2 � x2 � β

2 the net charge should be 1 even in the J → ∞ limit, and so it might be possible
to define a large J limit in which the action/energy stays finite. This could happen if the core
region spreads out significantly in the transverse directions. Our strategy here is simply to
investigate numerically the large J limit of a class of monopoles which are manifestly BPS
solutions for any J and which correspond to N = 2J + 1 monopoles equally spaced along the
x2 axis.

We use the Nahm construction of monopoles [3, 17], which is based on first solving the
‘Nahm equations’, a set of coupled ordinary differential equations (rather than the coupled
partial differential equations in (3)):

dTi

ds
= 1

2
εijk[Tj , Tk]. (8)

Here Ti(s) for i = 1, 2, 3, and s ∈ [−1, 1], are N × N square matrices for an N-monopole,
satisfying three conditions: (i) Ti(s) is regular for s ∈ (−1, 1), and has simple poles at
s = ±1, with matrix residues defining irreducible representations of su(2); (ii) T

†
i = −Ti and
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(iii) Ti(−s) = T T
i (s) (in some basis). It is not trivial to find solutions to (8) satisfying these

conditions. Nevertheless, an explicit solution is known which corresponds to a chain of N
BPS monopoles equally spaced along a line [19, 20] (this generalizes an explicit 2-monopole
solution in [21]):

T1(s) = −K
2

ds((s + 1)K|k)R1

T2(s) = −K
2

ns((s + 1)K|k)R2

T3(s) = −K
2

cs((s + 1)K|k)R3.

(9)

Here ds, ns and cs are elliptic functions, with real elliptic parameter 0 � k < 1, and K(k) is
the elliptic quarter period. The constant matrices Ri form an N ×N irreducible representation
of su(2). For definiteness, we choose R3 = −2i diag (J, J − 1, . . . ,−J + 1,−J ), and R1,2 to
be anti-Hermitian matrices with nonzero entries: (R1)n,n+1 = (R1)n+1,n = i

√
n(2J − n + 1)

and (R2)n,n+1 = −(R2)n+1,n = −√
n(2J − n + 1). Since we are primarily interested in the

central monopole in a long chain, we take N = 2J + 1 to be odd.
Given such Nahm data, to construct the monopole fields � and Aµ which satisfy the BPS

equation (3), one first solves the 1D Weyl equation{
12N

d

ds
− 1N ⊗ �x · �τ + iTj (s) ⊗ τj

}
v = 0, (10)

where �x ∈ R3 parameterizes the solution. There are two independent solutions, va(s; �x), (for
a = 1, 2), of (10) that can be normalized as∫ 1

−1
ds v†

avb = δab. (11)

Then the su(2) monopole fields are given in terms of the va(s; �x) by the following construction:

�ab(�x) = i
∫ 1

−1
ds sv†

a(s; �x)vb(s; �x) (12)

Aab
j (�x) =

∫ 1

−1
ds v†

a(s; �x)
∂

∂xj

vb(s; �x). (13)

An efficient numerical scheme for solving (10) has been presented in [18] where symmetric
N = 3 and N = 4 monopoles were studied from their known Nahm data. We have used a
similar numerical scheme, programmed in Matlab. The main complication is that the Nahm
data, which appears in (10), has singularities at the end points. Indeed, near s = ∓1 there are
simple poles:

−iTj (s) ⊗ τj ∼ i

2

(R1 ⊗ τ1 + R2 ⊗ τ2 + R3 ⊗ τ3)

1 + s
, s → −1 (14)

−iTj (s) ⊗ τj ∼ i

2

(R1 ⊗ τ1 + R2 ⊗ τ2 − R3 ⊗ τ3)

1 − s
, s → +1. (15)

These residues have eigenvalues J and −(J +1), with degeneracies 2J + 2 and 2J , respectively.
The negative eigenvalues correspond to singular behaviour of the vector v(s) at the end points
and so must be suppressed in order to satisfy the normalization conditions (11). That is, as
s → ∓1, v must lie in the (2J + 2)-dimensional subspace spanned by the eigenvectors of the
associated residue matrix with positive eigenvalues. These subspaces are independent of �x
and of the elliptic parameter k (which determines the period β), and so may be constructed
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once and for all for a given monopole number. Following [18], we solve (10) by shooting
from either end of the interval and matching at s = 0. The intersection of these shoots leaves
just two independent solutions, v1 and v2, each of which is a 2N -component column vector,
depending parametrically on �x. Given v1 and v2, we construct the magnitude squared of the
Higgs field using (12). We focus on |�|2 since it is gauge invariant, its zeros indicate the
locations of the monopoles and because it determines the BPS action/energy density in (4).
We implemented this numerical algorithm for three different values of the elliptic parameter:
k = 0.99, k = 0.5 and k = 0.2, which we found correspond to period β = 3.25, β = 0.8 and
β = 0.3, respectively, measured in units where the single-monopole core size is 1.

First, consider the behaviour of |�|2 along the direction of the monopole chain, which for
the choice of Nahm data in (9) is the x2 direction. (A simple relabelling rotates the monopole
in �x space). Figure 1 shows |�|2 along the x2 axis, for various values of the monopole number,
and for k = 0.99, k = 0.5 and k = 0.2, respectively. For k = 0.99 case, one can clearly
see the array of equally spaced zeros along the x2 axis. Note that the peak values of |�|2
between adjacent zeros are very small, and also decreases as N increases. As N gets large
|�|2 vanishes within a region of length Nβ, outside of which it reverts to its N-monopole form
(compare with figure 1). But for k = 0.5 and k = 0.2 it looks as though |�|2 vanishes inside
this region, −Jβ � x2 � Jβ, already for J = 2. This is not the case, however, as can be
seen from figure 3, which plots the logarithm of |�|2 along the x2 axis. From these we can
clearly see the periodic structure, with another two monopoles appearing on the x2 axis each
time N is increased by 2. Note how extremely small the peak values of |�|2 become between
adjacent monopoles as N increases. This is an indication that there are strong core interactions,
preventing |�|2 from getting anywhere near its asymptotic value between adjacent monopoles.
We deduce the period to be β ≈ 3.25 for k = 0.99, β ≈ 0.8 for k = 0.5 and β ≈ 0.3 for
k = 0.2. This period is measured in units of the single-monopole core size, so k = 0.99
corresponds to separated monopoles, which in the 3D Georgi–Glashow language corresponds
to the low-temperature limit. For k = 0.5, the separation and core size are comparable, while
for k = 0.2 the separation is less than (roughly one-third) the core size. In the notation of
Ward’s recent paper [14], the cases k = 0.99, k = 0.5 and k = 0.2 correspond to small,
medium and large values of the parameter C defining the ratio of the single-monopole core
size to the separation.

The plots in figure 2 should be contrasted with the behaviour along the x1 axis, as shown
in figure 4. For k = 0.5 and k = 0.2, the plots are very similar to those along the x2 axis, with
|�|2 vanishing inside a region of size of order Nβ. But for k = 0.99, the x1 axis behaviour
is very different from that along the x2 axis. This is the limit where the individual monopoles
are separated by a distance greater than the core size of a single monopole. To be sure there
is not some small-scale structure hidden in these plots; in figure 5, we show log(|�|2) along
the x1 axis. In contrast to the plots in figure 3, there is clearly no small-scale structure along
the x1 direction. This also serves as a check that the extremely fine structure along the x2 axis
is genuine, rather than a numerical artefact.

The dependence along the x3 axis is shown in figure 6. One might expect that in the large
N limit the monopole solution within the central x2 period would become radially symmetric
in the transverse (x1, x3) plane. However, this is not necessarily the case. For k = 0.99, the
dependence along the x1 and x3 axes is similar, as can be seen by comparing the first plot in
each of figures 4 and 6, although there is somewhat flatter behaviour near the origin along the
x1 axis. But for k = 0.5 and k = 0.2, there is a distinct asymmetry in this transverse plane.
The asymmetry is more pronounced as N increases, and is also more pronounced for smaller
values of k. Smaller k means smaller period so there is greater overlap, which presumably
explains the increased asymmetry. Indeed, for k = 0 the solution becomes axially symmetric
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Figure 2. Plots of |�|2 along the x2 axis for elliptic parameter k = 0.99 (top (a)), k = 0.5 (middle
(b)) and k = 0.2 (bottom (c)). The different curves correspond to increasing values of N, starting
with N = 1 at the top. For k = 0.99 one can see equally spaced zeros appearing along the x2 axis,
but for k = 0.5 and k = 0.2 these zeros cannot be seen on this scale. The periodicity can be seen
in figure 3 which plots log(|�|2).
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Figure 3. Plots of log(|�|2) along the x2 axis for elliptic parameters k = 0.99 (top (a)), k = 0.5
(middle (b)) and k = 0.2 (bottom (c)). The minima clearly indicate the periodic structure along the
x2 axis, and one can count the increasing number of monopoles in the chain for successive curves,
beginning with N = 1 at the top in each plot.
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Figure 4. Plots of |�|2 along the x1 axis for elliptic parameter k = 0.99 (top (a)), k = 0.5 (middle
(b)) and k = 0.2 (bottom (c)). The different curves correspond to increasing values of N, starting
with N = 1 at the top. Note that for k = 0.5 and k = 0.2 these are very similar to the corresponding
curves in figure 2, but for k = 0.99 there is a marked difference from the corresponding curve in
figure 2.
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Figure 5. Plots of log(|�|2) along the x1 axis for elliptic parameters k = 0.99 (top (a)), k = 0.5
(middle (b)) and k = 0.2 (bottom (c)). Unlike the corresponding plots in figure 3 along the x2 axis,
there is no sign of any periodic structure in x1 direction.



9368 G V Dunne and V Khemani

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

|Φ
|2

x3

|Φ|2 along x3 axis for k=0.99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

|Φ
|2

x3

|Φ|2 along x3 axis for k=0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-6 -4 -2  0  2  4  6

|Φ
|2

x3

|Φ|2 along x3 axis for k=0.2

(a)

(b)

(c)

Figure 6. Plots of |�|2 along the x3 axis for elliptic parameter k = 0.99 (top (a)), k = 0.5 (middle
(b)) and k = 0.2 (bottom (c)). The different curves within each plot correspond to increasing N,
starting with N = 1 at the top.
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in the (x1, x2) plane (with our convention of axes) [22, 3]. This can be seen in figures 2(c)
and 4(c), which plot |�|2 for k = 0.2 along the x2 and x1 axes, respectively, and which
are indistinguishable from one another on this scale, while being very different from the x3

behaviour in figure 6(c). This should be contrasted with k = 0.99 and k = 0.5 cases shown in
figures 2(a) and (b) and figures 4(a) and (b), where there is a distinct difference between the
behaviour of |�|2 along the x2 and x1 directions.

Although all these plots are along the axes, we found them to be representative of what
happens within a cubic region of size ∼(Nβ)3 centred on the origin. Thus, we make the
following empirical observations:

1. In the large N limit, |�|2 vanishes along the x1 and x2 axes within some region of order
(Nβ)2 centred on the origin. This also implies that part of the action/energy density,(
∂2

1 + ∂2
2

)|�|2, vanishes within this region.
2. In the large N limit, |�|2 exhibits three different behaviours along the x3 axis. At short

distance the behaviour is quadratic in x3, with a coefficient that decreases with N like 1
N3/2 .

At very long distances |�| ∼ 1 − N
|x3| , as expected outside the core of an N-monopole.

But in the intermediate region it is not yet clear what the dependence is. It can be fit well
in this regime by a linear behaviour or by a logarithm.

3. For period β much greater than 1 (the single-monopole core size), there is some remnant
of symmetry in the transverse (x1, x3) plane, but this symmetry is badly broken for β < 1.

Could these structures, which are clearly equally spaced in the x2 direction for any finite
N, survive as finite action/energy periodic structures in the infinite N limit? These numerical
observations show that there is considerable spreading of the core region in the transverse
(x1, x3) plane. Moreover, for β < 1 this appears to be almost one dimensional. In this case, it
might be possible to obtain a finite action/energy in the large N limit. However, this would be
at the price of the solution ‘washing itself out’, because as ∇2|�|2 spreads further out along
the x3 direction with increasing N, correspondingly its peak value decreases. Thus, while this
solution might appear to have a finite action/energy in the large N limit, the action/energy
density delocalizes and shrinks away to nothing.

We reached a limit of simple numerical analysis in obtaining the plots reported here. It
would be interesting now to investigate these empirical hints analytically at large N, possibly
using a semiclassical large spin J approach, and also by focusing directly on the β � 1 and
β � 1 limits.
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